Allometric Extension for Multivariate Regression
نویسندگان
چکیده
In multivariate regression, interest lies on how the response vector depends a set of covariates. A regression model is proposed where covariates explain variation in only direction first principal component axis. This not parsimonious, but it provides an easy interpretation allometric growth studies log-transformed data corresponds to constants growth. The naturally generalizes two–group extension situation groups differ according bootstrap test for and study plant Florida Everglades used illustrate model.
منابع مشابه
Extension of Logic regression to Longitudinal data: Transition Logic Regression
Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...
متن کاملOn Segmented Multivariate Regression
This paper concerns segmented multivariate regression models, models which have different linear forms in different subdomains of the domain of an independent variable. Without knowing that number and their boundaries, we first estimate the number of these subdomains using a modified Schwarz criterion. The estimated number of regions proves to be weakly consistent under fairly general condition...
متن کاملBayesian multivariate logistic regression.
Bayesian analyses of multivariate binary or categorical outcomes typically rely on probit or mixed effects logistic regression models that do not have a marginal logistic structure for the individual outcomes. In addition, difficulties arise when simple noninformative priors are chosen for the covariance parameters. Motivated by these problems, we propose a new type of multivariate logistic dis...
متن کاملLow rank Multivariate regression
We consider in this paper the multivariate regression problem, when the target regression matrix A is close to a low rank matrix. Our primary interest is in on the practical case where the variance of the noise is unknown. Our main contribution is to propose in this setting a criterion to select among a family of low rank estimators and prove a non-asymptotic oracle inequality for the resulting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of data science
سال: 2021
ISSN: ['1680-743X', '1683-8602']
DOI: https://doi.org/10.6339/jds.2006.04(4).287